NOTATION

a, empirical parameter taking account of nonuniform sections oriented parallel and perpendicular to

the general direction of heat flow in the model; b, empirical parameter taking account of the fact that only a
part of the surface of the solid frame is wetted and contributes to the diffusive heat transfer due to evaporation
and condensation of moisture; mS, mw, mj, my,p, volume concentration of the solid component, liquid, and
pores with dry and wet walls, respectively; A, effective thermal conductivity of moist materials; Ag, Ay,
A1, MAID, thermal conductivity of the solid component, liquid, dry air, and air — vapor mixture (diffuse com~
ponent); Adry, Aga, thermal conduetivity of dry porous and completely moist material; 9, diffusion coeffi-
cient; P, total pressure of the mixture; Pp, saturated vapor pressure; RD, universal gas constant; r, heat
of evaporation.

LITERATURE CITED

1, O. KRrisher, Scientific Foundations of Drying Technology [Russian translation], IL, Moscow (1961).

2. A. Misnar, Thermal Conductivities of Solids, Liquids, Gases, and Their Compositions [Russian trans-
lation], Mir, Moscow (1968).

3. G. N. Dul'nev and Yu, P. Zarichnyak, Thermal Conductivity of Mixtures and Composition Materials
fin Russian], Energiya, Leningrad (1974).

4, L. L. Vaselev and S. A. Tanaeva, Thermophysical Properties of Porous Materials [in Russian],
Nauka i Tekhnika, Minsk (1971).

5. I. S. Kammerer, Heat Insulation in Industry and Construction [in Russian], Stroiizdat, Moscow (1965).

THERMAL-CONDUCTIVITY RANGE FOR A COMPOSITE
HAVING KNOWN RANGES IN PARAMETERS FOR
THE COMPONENTS '

S. G. Zhirov UDC 536.21

The known ranges in thermal conductivity for the components may be used to determine the
range in thermal conductivity for a composite; formulas have been derived for the distribution
coefficients, which provide detailed values in each case.

There are presently many different methods of calculating thermal conductivities for composites in
terms of the known conductivities of the components; these methods form the subject of several reviews [1-4].

In these methods it is assumed that the thermal conductivity and the degree of filling are known exactly,
whereas in any measurement there is always some experimental error, and the final spread is governed by
the error of measurement as well as by variations in the properties of the material itself. In either case,
the measured value for the thermal conductivity is to be treated as a random quantity, one of the characteris-
tics being the mathematical expectation (most likely value) and another being the standard deviation.

In this connection it is of interest to determine how the spread in the thermal conductivity for each of
the components affects the spread in the same for the composite for various proportions of the components.

Further, a real composite also has a degree of filling in a finite volume that may also be considered as
a random quantity, which deviates to some extent from the mean value. Therefore, the thermal conductivity
of the composite should vary even within the volume of a specimen. We show below that in certain instances
one can determine in simple fashion the spread in the thermal conductivity of the composite as a function of
the spread in the degree of filling.
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Fig. 1. Thermal-conductivity distributions: a) composite with a
normal distribution for the thermal conductivity of the filler; ‘b)
filled material with a normal distribution for the degree of filling
in specimens of finite size. Mean degrees of filling: 1) 0.3; 2)
0.5; 3) 0.7.

The theory of probability [5] shows that if a random quantity Y is a function of another random quantity
X, namely, Y = ¢(X), then the distribution for Y is defined by

L@ =TI @), @)

where () = x and f; (y) is the desired density, f(x) is the distribution for x, which is related toy by y = ¢(x).
or x = y{y), and ly'(y)l is the absolute value of the derivative of y with respect toy.

Therefore, the distributions for the conductivities of the components can be used with the relationship
between these conductivities and the conduectivity of the composite in conjunction with (1) to define the distri-
bution for the conductivity of the composite. This enables one to define the mean thermal conductivity and the
standard deviation.

This is the simplest when the thermal conductivity of the composite is linearly related to the conductivi~
ties of the components; for example, several formulas [6-10] are available, which can be represented in one
of the following forms:

A= ay —J,— b17\/1, } (2)
A= a, + b27\,2. ‘

Usually, thermal-conductivity measurements for the components can be represented as normal distribu-
tions, the distribution for component i taking the form

exp[_M] 3)

2
QO'M

F(h,) = ——
P =

311

If A is linearly dependent on Aj, the distribution for A will also be of normal form, whose mean and
standard deviations are defined by

ko = a; -+ bihy, 4)

Oy, = Gki ‘[biJ. } (5)

If a linear relationship does not apply, it is possible to derive an expression for the distribution for the
composite only in certain particular cases. As an example, we consider the distribution for a composite in
which the matrix has a constant thermal conductivity while the filler has a normal distribution, for which pur-
pose we use the formula of [11] for matrix systems, which takes the form

Ao P
w o TP - ©

M _
3 +h_1

M
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We transform (6) to get

P 24P (’L_l)
- 3 . Ay
A2~?u1p_ I*P.('L__l (7
s (1)
Then
, P
L 3 (7"1 )
We substitute (7) and (8) into (1) to get f(A) for this case:
- Py 24P (_7_»__1 27
3 A :
MO (% {) —hao
1 P : E (If_
A= . _expl — , .
I Vaaoy, | p_ 1—P (-L—.l P P,xpL 207, _I (9)
3 M ' :

This is clearly not a normal distribution; Fig. la shows the distribution given by (9) for various de-
grees of filling when Ay =1 W/m-°C, Ay;=0.5W/m-°C, and Or, = 0.2W/m-°C.

There are also no essential difficulties in defining the distribution of A when A; has a normal distribu-
tion, but the expression then becomes very cumbersome and is not given here.

It is also of interest to consider the case where the filler is unevenly distributed over the volume of the
composite, provided that we can assume that the degree of filling for specimens taken from different points
will have a normal distribution:

1 (=P
HP)—V%GP eXP[ s ] (10)
If (6) is used, with Ay/Ay =v and A/Ay =y, we get
_p_y—l 24V . 11
P (¥) Dy — a5
24w 3
t ) = . . (12)
VOIS e
Then
[ (y——l 24+ _P‘)'~’
24w 3 1 vl N 247 Tv—1 ’ J; (13)
0= Gy Vamer 207

Figure 1b shows graphs for this function for Py = 0.3, 0.5, 0.7; op = 0.2; and v =5,

Then these formulas allow one to define the distribution of the thermal conductivity for a composite if
the parameters of the normal distribution are known for each of the components, together with those for the
degree of filling. These distributions allow one to calculate the mean and standard deviations of the thermal
conductivity of the composite.

Analogous formulas can be derived when other working formulas are employed, and also when the dis-
tributions for the thermal conductivity or degree of filling are not normal.
NOTATION
A, effective thermal conductivity of composite; Ay, A, thermal conductivities of matrix and filler; Aj,
thermal conductivity of i~th component; P, degree of filling; f(y), distribution density of random quantity Y;
ay, as, by, by, coefficients dependent on specific formula; y,, mean value of y; oy, standard deviation of y.
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CONTACTLESS METHOD OF DETERMINING THE
COEFFICIENT OF THERMAL DIFFUSIVITY OF LOCAL
DOMAINS OF SURFACE LAYERS AND THIN FILMS

K. G, Gartsman, T. T. Dedegkaev, UDC 536.2.023
A. D. Terekhov, and E. M. Sher

A method is proposed for measuring the coefficient of thermal diffusivity of microsections of
surface layers and thin films, The coefficient of thermal diffusivity is calculated from the time
dependence of the heat flux emitted by the heated surface.

The possibility of determining the physical parameters characterizing micron regions of surface layers
of bulk specimens and thin films is important in the miniaturization of technical apparatus.

X-ray spectrum electron-probe microanalysis [1] is extensively used at this time. In particular, this
method is used to investigate semiconductor materials and thermoelectric substances, which permits obtain-
ing data about the microinhomogeneity of the substance, the composition of the shallow phases, the interme-
diate layers, the behavior of the doping impurities, etc. [2]. Knowledge of only the results of an x-ray spec-
trum microanalysis is insufficient for an estimation of the role of the microinhomogeneities, the shallow
phases, and the intermediate layers in semiconductor instruments. Knowledge of the physical parameters of
the microdomains under investigation, particularly the thermophysical properties, is also important,

We used an electron beam x-ray microanalyzer of MS-46 type in combination with a high sensitivity in-
frared radiation detector to determine the coefficient of thermal diffusivity of surface or film microsections.
Since the diameter of the electron beam of instruments of the type mentioned equals approximately 1 um, the
measured values of the coefficient of thermal diffusivity will characterize a domain several microns in size.
The crux of the method is the following.

A cylindrical section of radius a and thickness I (Fig. 1) of the surface of the specimen 3 under investi-
gation is exposed to the axisymmetric electron beam 1 whose density is normally distributed.

Heat will be liberated at the site of electron beam incidence on the surface being investigated, part of
which will be dissipated in the substance and part of which will be radiated by the surface into surrounding
space. It may be considered that the quantity of energy being radiated is negligible compared to the quantity
which is dissipated within the substance.
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